WebS1. Introduction. Our work is based on a remarkable theorem of Higman [22],1 given below as Theorem 1.3. Convention: is a nite alphabet. Definition 1.1. Let x;y2 . We say that xis a subsequence of yif x= x 1 x nand y2 x 1 x 2 x n 1 x n. We denote this by x y. Notation 1.2. If Ais a set of strings, then SUBSEQ(A) is the set of subse-quences of ... WebFeb 12, 2016 · By Higman's lemma, the subword order on A ∗ is a well-quasi-order. Therefore, for each language L, the set F of minimal words of L (for the subword ordering) is a finite set F and ш ш L ш A ∗ = F ш A ∗. It is now easy to show that ш F ш A ∗ is a regular language. In a vein similar to Pin's answer.
Friends and relatives of BS(1,2) - Stevens Institute of …
WebHALL-HIGMAN TYPE THEOREMS. IV T. R. BERGER1 Abstract. Hall and Higman's Theorem B is proved by con-structing the representation in the group algebra. This proof is independent of the field characteristic, except in one case. Let R be an extra special r group. Suppose C_Aut(/?) is cyclic, ir-reducible faithful on R¡Z(R), and trivial on Z(R). Weba modified proof for higman’s embedding theorem 3 Solving Hilbert’s T enth Problem [ 13 ] established that a subset of Z n is recursively enumer- able if and only if it is Diophantine. green forest curtains
Graham Higman - Wikipedia
Higman's theorem may refer to: • Hall–Higman theorem in group theory, proved in 1956 by Philip Hall and Graham Higman • Higman's embedding theorem in group theory, by Graham Higman Higman was born in Louth, Lincolnshire, and attended Sutton High School, Plymouth, winning a scholarship to Balliol College, Oxford. In 1939 he co-founded The Invariant Society, the student mathematics society, and earned his DPhil from the University of Oxford in 1941. His thesis, The units of group-rings, was written under the direction of J. H. C. Whitehead. From 1960 to 1984 he was the Waynflete Professor of Pure Mathematics at Magdalen College, Oxford. WebCiteSeerX - Document Details (Isaac Councill, Lee Giles, Pradeep Teregowda): Given two strings x, y ∈ Σ ∗ , say that x is a subsequence of y (denoted x ≼ y) if x results from removing zero or more characters from y. For a language L ⊆ Σ ∗ , define SUBSEQ(L) to be the set of all subsequences of strings in L. We give a new proof of a result of Higman, which states, If L … flushing system